
Brief Introduction to Matlab

The Matlab Window (R2018)

C
u

rr
en

t
Fo

ld
er

d
a

ta
 f

ile
s,

 s
cr

ip
ts

, e
tc

o
n

 c
o

m
p

u
te

r’
s

d
ri

ve

W
o

rk
sp

ac
e

va
ri

a
b

le
s,

 d
a

ta
, f

u
n

ct
io

n
s

in
 c

o
m

p
u

te
r

m
em

o
ry

C
o

m
m

an
d

 W
in

d
o

w
typ

e co
m

m
a

n
d

s h
ere

Command Prompt
type commands after the >>
Note: it may take a while for this to appear
when Matlab starts on campus computers…

Command prompt is like “calculator mode.”

>> 2 + 5

ans =

7

>> cos(15)

ans =

-0.7597

Store results in variables.

>> 2 + 5

ans =

7

>> ans + 3

ans =

10

>> a = 2

a =

2

>> b = a^a + 3

b =

7

Press <up arrow> on your keyboard
to see your command history

Repeat a command from the past!

Importing Data to Matlab with GUI (R2018)

Easiest method:
use import tool

Select data file from drive:
.txt .csv .xls .xlsx .ods

Choose format of data after import:
table, series of vectors, matrix, …
(probably matrix)

Highlight data from file to import

Click to change name of imported data and name of columns (if table)

Creating and Editing Variables with GUI (R2018)

Graphical Interface for Editing:
-- Double-click variable in Workspace

or
-- Select “Open Variable” from ribbon

Now you can enter values into
the data variable, just like Excel.

This is meant for raw numeric
data entry – no complicated
formulas allowed!

Large dataset --- may be easier to use direct command:

>> readmatrix(<file>) >> readtable(<file>)

(Benjamin Walter METU-NCC SPE Presentation 5.10.2019)

Free online Matlab tutorial course by MathWorks (Matlab company)
https://www.mathworks.com/learn/tutorials/matlab-onramp.html

https://www.mathworks.com/learn/tutorials/matlab-onramp.html

Basic Data Manipulation in Matlab

Basic data types: Vectors and Matrices.
-- Entered using […] comma or space separates row entries

semicolon or new-line separates rows.

>> v = [2 3 4 5]

v =
2 3 4 5

>> w = [4, 6, 8, 10]

w =
4 6 8 10

>> A = [1 2 ; 3 4]

A =
1 2
3 4

>> B = [1 2

3 4]

Important basic operator for making vectors -- colon:
<start> : <end> sequence of numbers from <start> to <end>
<start> : <step> : <end> sequence from <start> to <end> by <step>

>> v = 2 : 5

v =
2 3 4 5

>> w = 0 : 0.2 : 2

w =
0 0.2 0.4 0.6 0.8 1.0

>> A = [1 : 3 ; 4 : 2 : 8 ; -1 : 1]

A =
1 2 3
4 6 8
-1 0 1

Note: Ending command with semicolon suppresses Matlab output

>> v = 2 : 5 ;

>> w = 0 : 0.2 : 2 ;

>> A = [1 : 3 ; 4 : 2 : 8 ; -1 : 1] ;

>> B = [1 : 100 ; 101 : 200] ;

Refer to specific elements of vectors and matrices using (..) “index notation”

>> v = [7 11 13 17]

v =
7 11 13 17

>> v(2)

ans =
11

>> A = [1 2 3 ; 4 5 6 ; 7 8 9] ;

>> A(2 , 3)

ans =
6

element 2 of v element in row 2, column 3 of A

Use index notation (..) to change elements as well as view them.

>> v = [7 11 13 17]

v =
7 11 13 17

>> v(2) = 25

v =
7 25 13 17

>> A = [4 5 6 ; 7 8 9 ; 10 11 12] ;

>> A(2 , 3) = 0

A =
4 5 6
7 8 0
10 11 12

Combine with : to cut out or change chunks of vectors or matrices.

>> v = [7 11 13 17 19]

v =
7 11 13 17 19

>> v(2 : 4)

ans =
11 13 17

>> A = [4 5 6 ; 7 8 9 ; 10 11 12] ;

>> A(2 : 3 , 1 : 2)

ans =
5 6
8 9

Colon on its own is a wildcard – for returning entire rows or columns.

>> A(: , 1)  all of column 1
>> A(2 , :)  all of row 2

Indexing with conditional statements gives values satisfying specific properties.

>> v(v <= 15)  only the values of v that are ≤ 15
>> A(sin(A) ~= 0)  only the values of A whose sin ≠ 0

Combine matrices using […]

>> A = [1 2 ; 3 4] ;

>> B = [5 6 ; 7 8] ;

>> [A B]

ans =
1 2 5 6
3 4 7 8

>> A = [1 2 ; 3 4] ;

>> B = [5 6];

>> [A ; B]

ans =
1 2
3 4
5 6

Examples
>> A = [A A(: , 1)]  add a copy of the first column to end of A

>> A = [A(end, :) ; A]  add a copy of the last row to start of A

>> A = A(: , [3 1 2])  reorder the columns of A

>> A(:, 3) = A(:, 1) + A(:, 2)  column 3 of A is column 1 + column 2

>> A(1, :) = A(1, :) + 20  add 20 to each element in row 1

>> A(A<3) = A(A<3) * 2  double all elements of A that are less than 3

>> [1 2 3] + 1  add 1 to vector [1 2 3]

>> [1 2 3] + [1 ; 5 ; 7]  matrix with three rows: add 1, add 5, add 7

Basic Operations in Matlab

Anonymous Functions in Matlab

Operations: + - * / ^ (plus, minus, times, division, power)

A few functions:

sin cos tan etc (trigonometric functions – in radians)
log log10 exp sqrt (natural logarithm and log base 10, exponential, sqrt)
abs max min ceil (absolute value, maximum, minimum, ceiling)

Adding and multiplying vectors or
matrices by numbers applies to all
elements.

>> A + 2  adds 2 to each element
>> A / 4  divides each element by 4

Adding and multiplying vectors or
matrices by other vectors or matrices
attempts matrix operation.

>> A + B  adds matrices
>> A * B multiplies matrices

Will fail unless sizes of A and B are compatible!

To multiply or divide elementwise, use the “dot” versions of the operator .* ./ .^ :

>> v = [1 2 3] ;

>> w = [4 5 6] ;

>> v * w

Error using *
Incorrect dimensions for matrix mult.

>> v = [1 2 3] ;

>> w = [4 5 6] ;

>> v .* w

ans =
4 10 18

To define your own algebraic functions in Matlab use the format
@(<vars>) <function expression>

>> f = @(x) x.^2 + 3*x + 1 ;

>> f(2)

ans =
11

>> g = @(x,y) x.^2 – y.^2 + x.*y ;

>> g(2,3)

ans =
1

To apply these functions to vectors or matrices you must use “dot” versions of operators!

>> [x, y] = meshgrid(-1:0.1:1, -1:0.1:1) ; % mesh of points filling [0,1]x[0,1]
>> f = @(x,y) x.^2 + y.^2 ; % distance from (x,y) to (0,0)

>> circ_x = x(f(x,y) <= 1) ; % keep only the points (x,y) which
>> circ_y = y(f(x,y) <= 1) ; % are inside the circle of radius 1

Basic Graphing in Matlab

Basic data plotting commands:

2
D

 P
lo

ts
3

D
 P

lo
ts

>> scatter (<x> , <y>)  plot points

>> plot (<x> , <y>)  plot points connected by lines (curves)

>> fplot (<f(x)>)  plot function (on interval [-5,5])

>> fplot (<x(t)>, <y(t)>)  plot parametric curve (on -5 ≤ t ≤ 5)

>> meshgrid (<x> , <y>)  creates grid of sample points for evaluating f(x,y)

>> mesh (<x> , <y> , <z>)  plot points connected by mesh of lines

>> surf (<x> , <y> , <z>)  plot points connected by shaded polygons

>> fsurf (<f(x,y)>)  plot surface (on interval [-5,5 for x and y])

>> fsurf (<x(u,v)> , .. , <z(u,v)>)  plot parametric surface

>> fplot3 (<x(t)>, <y(t)>, <z(t)>)  plot parametric curve (on -5 ≤ t ≤ 5)

>> [x ,y] = meshgrid (-8 : 0.5 : 8) ;

>> d = @(x,y) sqrt(x.^2 + y.^2) ;

>> f = @(x,y) sin(d(x,y)) ./ d(x,y) ;

>> mesh (x, y, f(x,y))

>> % surf(x, y, f(x,y))

Using any of these commands will open a “Figure Window” containing your graph.

The easiest way to add axis labels,
graph title, etc. is to use the toolbar
on the figure window.

Use “hold” command to add new plots to an existing figure.

>> x = 0 : 0.1 : 2*pi ;

>> plot (x, sin(x))

>> hold on

>> plot (x, cos(x))

>> hold off

Basic Programming in Matlab

Conditional Statements.

if (<expression>)

<statements>

end

if (<expression>)

<statements>

else

<statements>

end

if (<expression>)

<statements>

elseif (<expression>)

<statements>

else

<statements>

end

Logical Operators.

> greater than
< less than
== equal to

>= greater than or equal to
<= less than or equal to
~= not equal to

& AND
| OR
~ NOT

Loops.

for (<var> = <vector>)

<statements>

end

while (<expression>)

<statements>

end

Examples.

>> x = 0 : 0.1 : 2*pi ;

>> hold on

>> for (k = 0 : 0.1 : 2)

plot(x , sin(x + k))

end

>> x = 1 ;

>> for (k = 1 : 10)

x = x * k ;

end

>> x = 1 ; k = 1 ;

>> while (k <= 10)

x = x * k ; k = k + 1 ;

end

Using Loops to Compute Factorial

(Note: Combine multiple commands per line using semicolon.)

Creating Simple Functions

Programs are stored in function files

Create new function:
Select “New” → “Function”

Edit existing function:
Double-click a function in “Current Folder”.

• Matlab function files have .m extension

Top line is function declaration. function <output> = name (<input>)
outputArg results returned by function (usually delete one and rename)
untitled current name of function (usually rename this)
inputArg data which is passed to the function (usually rename this)

>> [X , Y] = untitled(x , y) % use function in Matlab

Next two lines are comments giving information about function (optional)
first line is FUNCTION_NAME and a one line description of function
second line is a more detailed summary

Function code with for loops and whatnot goes after the “function” declaration
and before the “end” declaration.

Functions use their own memory space (separate from the workspace)
-- only see the data which is passed to them
-- will not overwrite or change any variables on the workspace

Final line is end declaration.
when function reaches end, the value of “outputArg” well be returned

Nice tutorial video with more detail: https://www.youtube.com/watch?v=zr_aB7V79DE

Free online “basic coding in Matlab” tutorial by MathWorks:
https://learntocode.mathworks.com/

https://www.youtube.com/watch?v=zr_aB7V79DE
https://learntocode.mathworks.com/

